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Abstraet--A new approach for dense-spray modeling is employed to develop a model for multi-droplet 
interaction effects. A statistical description of droplets in a cloud and correlation functions for the effects 
of interactions between neighboring droplets are used to extract correction factors for various parameters 
that are affected by droplet interactions (e.g. drag coefficient, Nusselt number and Sherwood number). 
The correction factors enable the calculation of the drag coefficient, evaporation rate and heat transfer 
of a droplet in a cloud based on models for a single droplet. The model is employed to study the effects 
of droplet interactions on the evaporation and motion of a dense spray in a hot gaseous environment. 
It is shown that interaction effects are important during a larger fraction of the droplet lifetime as the 
droplet size decreases. The multi-droplet interactions cause the drag coefficient of a droplet in a dense 
spray to be lower--and hence its velocity higher--than that for an isolated droplet. For 100/Jm droplets, 
as expected, the evaporation rate decreases and the droplet lifetime increases due to multi-droplet 
interactions. For 40/~m droplets, however, the evaporation rate increases and the droplet lifetime 
decreases. Although heat transfer to an interacting droplet is slower than to an isolated droplet, at the 
same gas-phase conditions and relative velocity of the droplets, the higher relative velocity of a 40/~m 
interacting droplet more than compensates for this effect to result in a shorter droplet lifetime. 
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1. I N T R O D U C T I O N  

Typical  dispersed two-phase  flows encountered in engineering applicat ions such as combus t ion  
systems and chemical  processes have regions o f  large concentra t ion o f  particles or  droplets.  In such 
regions, the effects o f  neighboring droplets  modi fy  the ambient  condit ions in the flow near  any 
given droplet .  Fur thermore ,  the drag  coefficient, Nussel t  number  and Sherwood number  can be 
affected. Since the dimensions o f  a typical combus t ion  chamber  are o f  the order  o f  10-100 cm, while 
the droplets  are o f  the order  o f  ~< 100/zm, computa t iona l  resolution o f  the order  o f  the d rop  size 
is impossible.  In order  to overcome the resolution problem,  models  for  the effects o f  interactions 
between the droplets  should be developed. 

The need for  interact ion model ing has mot iva ted  a recent interest in the s tudy o f  interactions 
between droplets.  Mos t  o f  the existing work  on evapora t ing  droplet  interactions has pr imari ly  
concentra ted  on droplets  in artificial ar rays  and droplet  streams. A detailed review o f  droplet  a r ray  
theory is provided by Sirignano (1983). Al though ar ray  studies are useful to obta in  a basic 
unders tanding o f  the effects o f  interactions on the heat  and mass  t ransfer  to and f rom the droplets,  
their use is limited. Mos t  combus t ion  processes involve sprays, where only statistical informat ion  
on the location o f  the droplet  is available. 

A more  appropr ia te  way to s tudy droplet  interactions is through the cloud or g roup  approach ,  
which utilizes statistical averaging. This approach  was used by Labowsky  & Rosner  (1978), 
Cor rea  (1981), Bellan & Cuffel (1983) and others. However ,  mos t  o f  these studies neglect forced 
convect ion and thus are simply a diffusion analysis. Bellan & Har s t ad  (1987, 1988) studied 
the evapora t ion  o f  a droplet  cloud in a convective flow but  accounted only for  non- 
hydrodynamic  interactions (i.e. bui ld-up of  fuel vapor  concentra t ion in and cooling o f  the 
gas-phase  environment) .  

1"Present address: Propulsion Physics Division, Soreq Nuclear Research Center, Yavne 70600, Israel. 
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A new approach for cloud modeling is presented in this paper. Recent studies by Chiang & 
Sirignano (1993), Chiang et al. (1992), Kim et al. (1992, 1993) and others provide detailed 
information about interactions between droplets which travel in tandem or side-by-side in parallel. 
These studies involve the solution of Navier-Stokes, energy and species equations for a flow past 
2 or 3 droplets. The results of these studies provide correlations for the interaction effects 
that account for the hydrodynamic as well as non-hydrodynamic interactions between the 
droplets. 

A statistical description of droplets in a cloud, together with a model for its evolution in time 
and correlation functions for the effects of interactions between 2 neighboring droplets are used 
to extract correction factors due to multi-droplet interactions in dense sprays for various 
parameters (e.g. drag coefficient, Nusselt number and Sherwood number). The corrections factors 
are used to calculate the drag coefficient, lift coefficient, evaporation rate and heat transfer rate 
of a droplet in a cloud based on models for a single droplet. By employing correlation functions 
for the effects of interactions between two solid particles, this model can be used to account for 
multi-particle interactions in dense clouds of particles. 

The next section describes the statistical description of the droplets in the cloud and the 
calculation of the correction factor. Section 3 addresses the evolution of the parameters of the 
statistical description of the cloud as it travels through the gas phase. Finally, in section 4, the model 
is used to obtain results for the evaporation and motion of a dense cloud of droplets in a hot 
ambient gas. 

2. THE CORRECTION FACTOR FOR SINGLE-DROPLET LAWS DUE 
TO NEIGHBORING DROPLETS 

The calculation of a correction factor for a droplet parameter due to multi-droplet interactions 
with neighboring droplets is based on correlation functions for the effects of an upstream droplet 
and a droplet that travels side-by-side in parallel to the droplet. However, in reality, the position 
of a neighboring droplet is neither exactly upstream nor directly perpendicular to the droplet 
direction of motion. Thus, two more correction functions that are based on the azmuthal position 
of the neighboring droplet relative to the droplet direction of motion are needed. See figure 1 for 
the geometry of a neighboring droplet. These functions correct the correlation functions which are 
based on the distance between the droplets for azimuthal positions that are different from those 
for which the correlation functions were calculated. In this work, assumptions regarding the forms 
and parameters of the correction functions will be made, since almost no experimental or 
theoretical data is available for them. One exception is the work of Rowe & Henwood (1961), who 
measured the drag coefficient of a sphere with a neighboring droplet located at different distances 
and relative azimuthal positions. 

Figure I. The geometry of a neighboring droplet. 
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Four functions are used to calculate the correction factor: flu(l) and f~,(l) are correlation 
functions due to neighboring droplets that are located exactly upstream from or to the side of the 
droplet, respectively; and Ou(0) and g,p(0) are correction functions due to an azimuthal position 
that is not exactly upstream or aside. With these functions, the ratio of a general parameter q~ for 
a droplet influenced by a neighboring droplet to the value of ~ for an isolated droplet is constructed as 

- -  = [1 + f~u( l )4 ,~ (0) l [ l  + f ~ ( l ) ¢ ' ~ ( 0 ) l ,  [I] 
~iso  

where l and 0 are the position coordinates of the neighboring droplet relative to the droplet and 
its direction of motion. 

The position coordinates of the neighboring droplet, l and 0, are random variables whose 
probability distribution functions depend on the distribution of the droplets inside the cloud. The 
distribution function of the droplets within the cloud can be described by its mean value (#x, the 
average location of the droplets) and variance (Ox). In order to extract the relation between the 
parameters of the distribution of the droplets within the cloud and the average distance between 
neighboring droplets, the following assumption is used. It is assumed that the average instan- 
taneous distance between droplets in the actual cloud (l,v) is equal to the distance between droplets 
in a circular cloud, with the same number of droplets, in which the droplets are distributed 
uniformly. This cloud will be called the uniform cloud. The probability of finding, in the uniform 
cloud, a specific droplet within dr, dO and dcp of the point (r, 0, ~0) (spherical coordinates) is given 
by 

r 2 sin(O) ~0 ~< r ~< P~ 
f , ( r ,O,  qO= 4-------T-dr d0 d~;o 10 ...< 0 .-.< ~ [2] 

u~Rc ~ q~ ~< 27r, 

where r is distance from the center of the cloud and R~ is the radius of the cloud. The radius of 
the cloud, the number of droplets in it (N) and their number density (n) are related through the 
function 

f 3N'~ 1/3 
P ~ = \ 4 n n ]  " [3] 

For the distribution function given in [2], the variance of the droplet distance from the center is 

2 4nnR~ 3 2 
~ r =  5N =~Rc" [4] 

Demanding that both clouds have the same variance (i.e. o,2 _- ax • ax) gives 

n = ~ N I ~  I -j, [5] 

where ax is the variance of the droplet distribution function in the original cloud. 
In the uniform cloud, the distance between any 2 neighboring droplets is L Hence, if each droplet 

is surrounded by an imaginary sphere of radius l/2, these imaginary spheres touch each other and 
do not overlap. Knowing the number density of the droplets within the cloud, the volume of each 
sphere can be calculated from the following relation: 

E 
V = - [61 

n 

where E is the volume fraction occupied by these imaginary spheres. If the droplets in the uniform 
cloud are arranged in a face-centered cubic (FCC) lattice arrangement, E = 0.7405. It is still 
questionable whether E can be higher--see Conway & Sloane (1988). The best upper bound today 
for E is 0.7784. 

Employing [6], the distance between 2 neighboring droplets is given by the diameter of these 
spheres: 

1 = = 2.582 [ox[. [71 
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According to the previous assumption, this is the average instantaneous distance between 
neighboring droplets in the actual cloud. 

The distribution function for the distance to a neighboring droplet in the actual cloud will be 
assumed to have a maximum at the average distance between neighboring droplets and go to zero 
as the distance goes to infinity. A reasonable choice is 

f t ( l )=z exp(-z) ,  0~<z < oo, [8] 

with 

l - 2R 
Z ~ ~  

la~ - -  2R'  

where lay is the average distance between neighboring droplets. 
The probability of finding a neighboring droplet in any azimuthal position around a given 

droplet is equal. If there are a few neighboring droplets, each one has equal probability inside a 
sector of the space around the droplet. In order to determine how many neighbors a droplet has, 
it is assumed again that the droplets are distributed uniformly and each is surrounded by an 
imaginary sphere of radius lay/2. The spheres touch each other and do not overlap. It has been 
found that, at most, 12 spheres can be arranged so that they all touch a single sphere. See Conway 
& Sloane (1988, p. 21) for a review of this ancient geometrical question. One specific arrangement 
that complies with this requirement is the FCC lattice mentioned earlier. Hence, it is taken that 
each droplet inside the cloud has 12 neighboring droplets which are spaced evenly around it. 
Symmetrical considerations indicate that 6 neighboring droplets are in the upstream hemisphere. 
One is located almost directly upstream such that its 0 coordinate is in the range 0 ~< 0 <-<. 30, while 
the other 5 are in the range 30 ~< 0 ~< 90. For another 5, 90 ~< 0 ~< 150 is the range and the last 
droplet is located downstream with 150 ~< 0 ~< 180. Thus, a uniform distribution function is taken 
for the azimuthal position of a neighboring droplet: 

1 
f2(0) = , - - ,  00 ~< 0 ~< 0,, [9] 

OVOl  - -  

where the limits on the azimuthal position are different for each neighboring droplet (e.g. for the 
neighboring droplet which is located almost directly upstream 00 = 0 and 0, = 30). 

Using the distribution functions of I and 0, the mean value of the correction due to interactions, 
[1], with a randomly located neighboring droplet is 

foo f 0  I 
/~ = [1 + Qu(l)@u(0) ] [1 + D.p(l)@p(O)lF(l, O) dO dl, 

J2R d0o 
[10] 

where F(I, O)=f~ (l)f2(O) since l and 0 are independent random variables. 
In order to calculate the correction factor due to the interactions of several neighboring droplets, 

an assumption is made that the effect of each droplet can be calculated separately. Since the 
coordinates of the neighboring droplets are independent random variables, the correction factor 
for single-droplet laws, due to multi-droplet interactions, is given by 

K 
A ~  = l-I/~), [11]  

i=1 

where K is the number of neighboring droplets that affect the droplet. Note that, flu and ~p 
are the result of non-linear interactions between only 2 droplets. Therefore, this assumption 
about the pairwise additivity of hydrodynamic interactions cannot be rigorously defended. 
However, this assumption has been used previously by Glendinning & Russel (1982), who found 
that it gives correct results for dilute sprays and predicts the correct variation as the density 
increases. Neglect of the effect of screening due to intervening droplets, which becomes 
important for dense sprays, is corrected here by accounting for the effect of only the K nearest 
neighbors. 
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3. THE EVOLUTION OF THE DROPLETS'  DISPERSION 

In the previous section, the correction factor for single-droplet laws, due to interactions between 
neighboring droplets in a dense spray, has been calculated. The correction factor depends on the 
distribution function of the droplets within the cloud through the expression for the average 
instantaneous distance between neighboring droplets, [7]. This distribution function changes, as the 
cloud of droplets travels through the gas phase, due to the velocity differences between the droplets. 
The velocity differences between the droplets, which may have several causes (e.g. turbulent gas 
motion or atomizer instabilities), normally cause the cloud to expand as the cloud travels through 
the gaseous environment. This expansion causes a spray that is initially dense to become dilute as 
it moves forward, away from the atomizer. 

The Lagrangian equation for the velocity vector of a droplet is 

dUE 3p 
- CD-g~-X~  ( U  - U t ) I U  - ULI, [12] 

dt 

where 

Cr, = ~ (1 Re'~:3 Aca(Red,. 24 + 6 )  " ') '  [131 

Red = 2 --R IU - ULI [14] 
v 

and ACd (Rea . . . .  ) is the correction factor for the drag coefficient due to multi-droplet interactions. 
In order to calculate the dispersion of the droplets, the velocity vector of the droplet is divided 
into two components: 

UL = OL + U;. [151 

where UL is the average velocity vector of the droplets in the cloud and U~. is a vector of the 
difference between the velocity vector of a particular droplet and the average velocity vector; UL 
is a deterministic variable while U;. is random. O'Rourke (1989) developed the turbulent dispersion 
model of Dukowicz (1980) to explore the statistical properties of U~. due to the turbulent motion 
of the gas phase. Here, the same procedure is employed to study the effects of the initial differences 
in the velocities of the droplets, due to atomization, on their dispersion in a laminar flow field. It 
is assumed that the components of the initial velocity difference vector, U[, are random variables 
with the following distribution function: 

1 (UL0,i)  ] , 
f(U~o,i ) = ~ exp ~/27tau0,, L ~ J  - ~ < Ur_o.i < ~ ;  i = 1, 2, 3. [16] 

Substitution of [13]-[15] into [12] gives the following equations for the average velocity and the 
velocity differences: 

dt = 2p~-~ 1 + Acd(U- U'L) [171 

and 

where 

dU[ 9vp [ (  Re2/3~ ( . Red2/3"~ . . . .  ] 
dt  = 2~L R2 1 + ---~--) Acd(U - UL -- V~ )  -- 1 + - -~- - )  taca~tJ -- OL) , [181 

 ,ed -- 2 _R I u - ). [19] 
lJ 
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Generally, [18] should be solved numerically. For one-dimensional flow, when the average relative 
velocity of the droplets is much larger than the velocity differences between the droplets (i.e. 
IU - OLI >> lULl) and after neglecting terms of order O(U'L" U[), [18] becomes 

du~ 9vp " I (  l~e~/3~A (1 ( . Re~/3~d(Acd) ~-I 
d---7-=--2PLR-~-~UL 1-- I -T ;  Cxi+IF'~ed ~lF~.e~li3Acd+ 1-I--T)'-~--'~'~-ediR.d=~e,:l)J , [20] 

where u, /~L and u~ are the non-zero components of U, U L and U~, respectively. The solution of 
[20] is 

_~=exp(_f0 9vp r ( 1  1~2/3'~ (1 ( R e 2 t ~ ) ~ l  ) 1  ) UL0 \ 2pLR2L~, +L~-Z-)aCd+Re. ~l~e~'/3acd+ 1+ d r .  
Re d = l~e d 

[211 

This solution shows that the velocity differences decay exponentially in time. Even if U[ is 
calculated numerically by [18], as necessary under most conditions, the ratio of the instantaneous 
velocity differences to the initial velocity differences is still a deterministic function of  time (for a 
laminar flow field): 

U~j = Ai(t), i = 1, 2, 3. [22] 
U[0,, 

For turbulent flows, the functions A~(t) are non-deterministic, due to the stochastic nature of U. 
The reader is referred to O'Rourke 0989) for details on how to calculate A~(t) in a case of a 
turbulent flow. 

While [17] can be used to calculate the trajectory of the center of  the cloud, the equation for 
the velocity differences is employed to calculate the expansion of the cloud. The center of the cloud 
at t = 0 was prescribed to be the initial average location of the droplets. If  the velocity differences 
of the droplets are known, the position displacement of a droplet, relative to the location of  the 
center of the cloud, is given by 

I' 
X'  = X'o + U'L (Z ) dr, [23] 

00 

where X0 is the initial relative position vector of  the droplet. There may be some correlation 
between the initial distribution functions for the velocity differences and the relative position of 
the droplets. However, there is no need to define their joint distribution function. It is sufficient 
to assume that [16] is the marginal distribution function with respect to U~. (i.e. the distribution 
function obtained after integration of  the joint distribution function over the range of  X'). Using 
[23] and [22], the mean positions of the droplets in each direction (mean of  X') are 

;0 #x,~ = #~.i + #~0,i Ai(z) dr = 0, i = 1, 2, 3, [24] 

since, from [16], the average initial velocity difference is zero. Hence, the center of the cloud 
coincides with the instantaneous average position of the droplets. The variances of the components 
of the vector X'  are given by 

f0 (f0 2 _ _  2 ' ' A~(z) dr i = 1, 2, 3, [25] a x.i -- a xo,, + 2E(Xo,i, UL0,i ) Ai(z ) dr + a2o,i 

where 

/ # / # # # # 
E(X'oj UL0,J) = Xoj ULo, i f  (Xo,i, UL0,t) dX0,i dULo J, 

,1-~ oo 

If U~0 and X~ are independent random variables then 

a~,, = o,~,i + ao0,i .'li(T) dr  , 

; = 1, 2, 3. [26] 

i = l ,  2, 3. [271 
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The temporal variation of the variance of the droplets' distribution within the cloud, ax, provides 
all the necessary information regarding the expansion of the cloud because of the velocity 
differences between the droplets. As has been shown in section 2, this is all that is needed to 
calculate how the effects of interactions between neighboring droplets change as the cloud of 
droplets travels through the gas phase• 

With [25] for the temporal variation of the distribution function variance, the dispersion velocity 
(the velocity at which the average distance between droplets increases) is given by differentiating 
[7] with respect to time: 

d-t = 2.582 \N]  2lax I 

where the components of the ~ vector are given by 

• 2 t i I ~  (ax,/) = 2E(X0,i ULO,i)A~(t) + 2a~o,iAi(t) A~(T) dz, i = 1, 2, 3. [29] 
d v  

Writing [28] as a function of the cloud mass and the size of the droplets gives 

(47ZpLf-)'/3(rx'#x dl = 2.582 R [30] 

For clouds with the same mass, velocity differences variance and position variance, [30] indicates 
that the dispersion velocity is larger for clouds with larger droplets. This occurs because the ratio 
of the droplet spacing to the droplet radius R, for fixed liquid mass, depends upon the cloud volume 
but is independent of the droplet radius. This effect can be seen in figure 7(a) for the case of a linear 
correlation between the droplet position and velocity differences. At t = 0 all clouds have the same 
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Figure 2. Drag coefficient correction factor and correlation functions for interaction effects due to an 
upstream or side droplet. 
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mass, velocity differences variance and position variance. As expected from [30], the dispersion 
velocity at t = 0 (the slope of the I vs t curves) is largest for the cloud of 100/~m droplets and 
smallest for the cloud of 40/~m droplets. In the other case presented in figure 7(a), the initial 
velocity differences and the initial position of the droplets are independent random variables. 
Hence, the dispersion velocity at t = 0 is identically zero and this effect cannot be noticed. 

4.  R E S U L T S  A N D  D I S C U S S I O N  

We study the properties of the correction factor before examining the effects of multi-droplet 
interactions on the behavior of a dense spray. The correlation functions listed below were used in 
the computations. Note that the model does not put any limitations on the form and parameters 
of the correlation functions. Moreover, up to this point, the analysis is applicable to sprays as well 
as to clouds of solid particles. 

Regarding the correction functions ~u and ¢ ~ p ,  it is assumed that they are general and apply for 
any parameter ~v that may be affected by droplet or particle interactions, ~u, the correction of flu 
for 0 different from zero, is taken to be 

/ ~ - - 0  2 
*u=exp~--~w) ,  0 < 9 0 ,  [31] 

where 0w is half of the upstream droplet wake angle, ~p, the correction of lip for 0 different from 
90 ° , is taken to be 

q~p = sin(0). [32] 

The correlation functions D., and lip are different for droplets and particles and for each 
parameter ~v. The functions t'l~ and D~, cd for the effects of interactions on the drag coefficient of 
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Figure 3. The effect of  the azimuthal correction functions on  the drag coefficient correction factor. 
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a droplet are taken from Chiang & Sirignano (1993) and Kim et al. (1993), respectively. Thus, from 
Chiang & Sirignano (1993), it is found that 

[ 1 + Q?(r)@, (0)] = 0.549Re;0.098( 1 + BH,fi,m)0.‘32 (;T (>,.Q’ , 
[331 

where G,(O) = 1. In this and the following correlations, Re, is the droplet Reynolds number, &film 
is the heat transfer number and Pr,,, is the Prandtl number [all calculated according to the average 
conditions in the boundary layer (film) around the droplet]. The index “1” denotes the upstream 
droplet and “2” is used for the downstream droplet. This correlation and the correlation given by 
[35] have been fitted to numerical results where 11 < Re, < 254, 0.68 6 Prfi,, < 0.91, 
O<B ,, fi,m < 2.52 and 0.17 < R2/R, < 2. Based on data (in a case without heat or mass transfer) from 
Kim ei al. (1993) the following correlation can be constructed: 

ncd = 0 628 1 5Re0.‘7287 

/ -2.4862 

P * m 
0 

- 
R ' 1341 

where here 50 G Re, < 150 and the other parameters are constants-Pr,, = 1, BH,h,m = 0 and 
R21R, = 1. 

As for the effect of droplet interactions on the heat transfer rate, Chiang & Sirignano (1993) 
found that the ratio of the Nusselt number (Nu) of an interacting droplet to the Nu of an isolated 
droplet can be approximated by 

[ 1 + 0$‘“(r)@, (0)] = 0.528Re;0.‘46Pri:768 (1 + B,.,film)0.356 (;~(~fJ.'4', 

1. 
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Figure 4. The combined correlation function for the drag coefficient vs the azimuthal position of a 
neighboring droplet. 
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while, based on heat transfer (without mass transfer) data from Tal & Sirignano (1981), 

/ 1 \-2.580 
= 1.250 [361 

where here 40 ~< Re,, ~< 150, 0.5 ~< Pr~m ~< 5 and R2/R~ = 1. The range for BH.~m is not reported. 
The dependence of the correlation factor, [10], for the drag coefficient on the average distance 

between neighboring droplets is shown in figure 2. It is calculated for a mono-size cloud, with 
Red = 50 and without heat transfer. The corresponding correlation functions, [33] and [341, are 
shown in figure 2. Generally, the correction factor decreases from unity as the average distance 
decreases. However, at very small distances (l,~ < 5R), the effects of the neighboring side-by-side 
droplets cause an increase in the correction factor. As can be seen, the correction factor can become 
larger than unity if the droplets are very close (i.e. the drag coefficient of a highly interacting droplet 
is higher than that of an isolated droplet). The correlation functions for interaction between two 
neighboring droplets are equal to unity if the relative distance between the droplets is larger than 
35. The correction factor, however, is lower than unity, even if the average distance between the 
neighboring droplets is larger than 35 since there might be some droplets at shorter distances for 
which interactions are significant. The effect of the assumed azimuthal correction functions on the 
results for the correction factor can be evaluated from figure 3. Figure 3 compares results for 
correction factors calculated with three wake angles for the ~u function and three different ~p 
functions. As can be seen in figure 3, the choice of the ~p function has little effect on the correction 
factor but the choice of the wake angle strongly affects its magnitude. 

Figure 4 shows the dependence of the combined correlation function, given by [1], on the 
azimuthal position of the neighboring droplet. The qualitative behavior is similar to that presented 
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Figure 5. The effect of the azimuthal correction functions on the azimuthal variation of the combined 
correlation function for the drag coefficient, at I = 3. 
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by Rowe & Henwood (1961). Figure 5 shows the effect of  changing the azimuthal correction 
functions on the results presented in figure 4 for i = 3. Again, the effect of  changing the ~p function 
is very small, while the choice of  the wake angle has a large effect. From the results presented by 
Rowe & Henwood (1961), it is clear that a constant value for the wake angle is physically incorrect 
if the distance to the neighboring droplet is less than 3. However, taking 8w = ~/6 gives a good 
approximation for the azimuthal variation of  the combined correlation function if l > 3. 

In figure 6, we present results for the correction factor calculated for 6, 12 and 18 neighboring 
droplets. For  the 6 neighbors case, 1 neighboring droplet is located ahead in the upstream direction, 
4 on the sides and 1 behind. The location of the neighboring droplets for the 12 neighbors case 
has been described previously. For  the case where each droplet has 18 neighbors, 1 neighboring 
droplet is located ahead in the upstream direction, 4 about 45 ° from the upstream direction, 8 on 
the sides, 4 more with an average 0 = 135 ° and 1 downstream. As can be seen, the results are quite 
similar for all cases. 

Finally, the last free parameter of the model is the volume fraction occupied by the imaginary 
spheres surrounding the droplets (E). This parameter relates the droplets' distribution function to 
the average distance between neighboring droplets, [7]. Since it is a constant, a change in E is 
equivalent to a change in the initial average distance between neighboring droplets. We assumed 
that E = 0.7405. It may be smaller if the droplets are packed in a less-dense arrangement. For  
example, if the droplets are located at the nodes of a three-dimensional rectangular grid E = 0.5236. 
However, since the third root of  E appears in [7], it represents a change of 11% in the initial average 
distance between neighboring droplets. As can be seen in figure 9, such a difference in the initial 
average distance has a negligible effect on a droplet history. 

Figures 7-11 show the results for the evaporation and motion of dense clouds of  droplets in a 
one-dimensional flow field. The initial droplet size for each cloud is different, but the mass and 
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Figure 6. The effect of the number of neighboring droplets on the drag coefficient correction factor. 
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Table I. The physical parameters used in the calculations 

Gas phase 
Composition Air 
Velocity 1.0 [m/s] 
Density 1.23 [kg/m 3] 
Temperature 1200.0 [K] 

Droplets 
Composition n-Decane 
Average velocity 20.0 [m/s] 
Variance of the velocity differences 0.31 [m/s] 
Velocity-location correlation 0 
Initial average droplet radius 70.0 [~m] 
Wake angle 7t/6 

Table 2. The initial parameters of the clouds 

Cloud No. 

I II III 

Initial radius of a droplet ~m] 40 60 I00 
Initial average distance between 

neighboring droplets [gm] 120 180 300 
No. of droplets 536 159 34 

radius o f  the clouds are kept  constant .  Hence,  the number  o f  droplets  that  fo rm a cloud increases 
and the average distance between neighboring droplets  decreases as the initial size decreases. The 
initial drople t  sizes tha t  were used for  the calculat ions are 40, 60 and 100 # m .  The  model  for  the 
evapora t ion  o f  a droplet  is taken f rom A b r a m s o n  & Sirignano (1989). The  relevant da ta  is given 
in tables 1 and 2. Dur ing  parts  o f  the simulations,  the values of  Prf~ m and Bs,alm are out  o f  the ranges 
for  which the correlat ion functions have been constructed.  Ext rapola t ion  o f  the correlat ion 
functions for  these values gives er roneous  results. Hence,  if the actual  value o f  a pa rame te r  is out  
o f  the range for  which the correlat ion funct ion has been constructed,  the correlat ion funct ion is 
calculated with the corresponding value of  the pa rame te r  at  the range limit (i.e. if  the heat  t ransfer  
number  Ba,a~m, becomes larger than 2.52, the correlat ions are calculated for  B s , f i l  m = 2.52). 

The  calculat ions presented here were done  with the assumpt ion  that  the initial velocity differences 
and  relative posit ions o f  the droplets  are independent  r a n d o m  variables. This  assumpt ion  will now 
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Figure 7(a). Time variation of  the absolute distance between neighboring droplets. 
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Figure 7(b). Time variation of the normalized distance between neighboring droplets. 

be justified. Figure 7(a) presents the non-dimensional average distance between neighboring 
droplets and compares the results of two cases: (1) U~ and X~ are independent random variables; 
(2) there is a positive linear correlation between U~0 and X~ (higher initial velocity difference 
corresponds to a higher initial displacement). As can be seen at t = 0, for the case where U~.0 and 
X~ are independent random variables, the initial dispersion velocity of the cloud is zero. If the initial 
velocity and initial position are independent random variables, there is an equal probability of 
finding, on the boundary of the cloud, a droplet that moves into or outside the cloud. Hence, the 
initial dispersion velocity is zero. As the droplets move, because of the velocity differences relative 
to the center of the cloud, a correlation between the droplet velocity difference and its position 
develops (i.e. droplets with high velocity differences move to the boundaries of the cloud and those 
with low velocity differences stay in the inner part of the cloud) and the dispersion velocity 
increases. For the other case, this correlation is already fully developed at t = 0 and the dispersion 
velocity is maximal at this time. If the correlation coefficient between the initial velocity and the 
position of a droplet were negative, the initial dispersion velocity is negative. This causes the 
number density to increase initially, but as the positive correlation develops the cloud starts to 
expand and the number density decreases. As can be seen in figure 7(a), the characteristic time for 
the development of the dispersion velocity is much shorter than the droplet lifetime. Although there 
is a moderate difference between the results for the average distance between the droplets for these 
two cases, no effect on the velocity or evaporation rate of the droplets has been noticed. 

Regarding the results of the case where U~0 and X~ are independent random variables, the 
average distance between neighboring droplets in the cloud of small droplets (R0 = 40 # m) does 
not change much throughout the droplet lifetime. However, the distance between the large droplets 
(R0 = 100/~m) increases by a factor of 5. There are two reasons for the smaller dispersion of a cloud 
into small droplets: the drag force causes greater acceleration of the small droplets so that their 
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velocity differences decay faster; therefore, with a larger number of small droplets, the dispersion 
velocity will be smaller. 

The absolute distance between the droplets, however, is not the correct variable to study 
regarding the effects of droplet interactions. The interactions also depend on the size of the droplets, 
and the correct variable to study is the normal distance between the droplets. The normalized 
distance between the droplets is given by the ratio of the absolute distance to the instantaneous 
radius of the droplets. Figure 7(b) presents the normalized distance between the droplets. The 
absolute average distance between the small droplets remains almost constant in time but as they 
evaporate the normalized distance increases. For the large droplets, the initial evaporation rate is 
slow and their radius does not change much. However, their velocity differences decay slowly. 
Hence, the normalized distance between the large droplets changes mainly because of their 
dispersion. The relative importance of interaction on droplets of different initial sizes can be found 
from the data in figure 7(b). The normalized distance between 40/~m droplets reaches a value of 
30 after 97.8% of their lifetime. 100/~m droplets reach this stage after only 54.7% of their lifetime. 

Figure 8 compares results with and without accounting for droplet interactions. It displays the 
time variation of the velocity of the droplets and their radii. As expected, at the first stage of a 
droplet lifetime, when accounting for droplet interactions, the velocity of the droplets is higher since 
interactions lower the drag coefficient. However, while the evaporation rate of a 100/~m droplet 
decreases due to interactions, the evaporation rate of a 40/~m droplet increases and its lifetime is 
shorter. Although the heat transfer to a 40/~m interacting droplet is slower than to an isolated 
droplet of the same size (when the gas-phase conditions and the relative velocity of the droplets 
are the same), the higher relative velocity of a 40/~m interacting droplet more than compensates 
for this effect to result in a shorter droplet lifetime. The effect of the initial distance between 
neighboring droplets is displayed in figure 9. It appears not to have a major effect. 
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Figure 8. Time variation of the droplets' velocity and radius. 
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Figure 9. The effect of the initial average distance between neighboring droplets on the temporal variation 
of the velocity and radius of a droplet. Calculated for clouds without velocity differences between the 

droplets and an initial droplet radius of 80/~m. 

Finally, the small total effect of interactions with a larger effect earlier in the droplet lifetime is 
shown by figures 10 and 11. Figure 10 shows the competing effects of correcting CD and Nu for 
multi-droplet interactions. It displays the instantaneous evaporation rate of a 100 #m droplet (rh). 
Curve 1 have been calculated by accounting for the effects of interactions on both the drag 
coefficient and Nu, while curve 2 was calculated without accounting for interaction effects. When 
only the CD is corrected for interaction effects, curve 3 is obtained. The higher droplets velocity, 
due to their lower corrected drag coefficient, causes the evaporation rate to increase. However, 
when only Nu is corrected for interaction effects (curve 4) the evaporation rate is lower initially, 
since the lower heat transfer rate causes the surface temperature to rise slower than for an isolated 
droplet. For a 100/~m droplet, the correction to Nu is more important than the correction to CD 
and the total effect of interaction is to increase the droplet lifetime. 

Figure 11 presents again the dependence of the drag coefficient correction factor on the average 
distance between neighboring droplets. Here however, the Re and heat transfer values used for the 
calculations were taken from the results for the evaporation and motion of a dense spray of 100/tm 
droplets in a one-dimensional flow field. The different curves are calculated with the actual 
conditions of  the droplets at different times. For the conditions prevailing during most of  the 
droplet lifetime, the correction factor is quite close to unity, except for early times and small 
spacings. 

5. CONCLUSIONS 

A new approach for dense-spray modeling is used in this paper to develop a model for 
multi-droplet interaction effects. This model is employed to calculate the effect of multi-droplet 
interactions on the evaporation and motion of a dense spray in a hot gaseous environment. 
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Figure 10. Instantaneous evaporation rate of a 100 #m droplet: (1) with interaction effects; (2) without 
interaction effects; (3) when only C D is corrected for interaction effects; and (4) when only Nu is corrected 

for interaction effects. 

It has been found that the dispersion velocity (i.e. the velocity at which the average distance 
between the droplets increases) of fine sprays is lower than for sprays of large droplets. The average 
correction factor due to multi-droplet interactions effects increases as the initial droplet size 
decreases (i.e. interactions affect small droplets more strongly than large droplets). The decay of 
the effects of interactions between small droplets is mainly due to the evaporation of the droplets. 
For large droplets, interaction effects decay mainly because of the dispersion of the droplets. 

Multi-droplet interactions do not cause a monotonic change in the parameters that are affected 
by them (e.g. drag coefficient, Nu and Sherwood number) as the average distance between the 
droplets increases. The drag coefficient and Nu correction factors decrease as the average distance 
between the droplets increases for i,v < 5R and increase as l,v increases for l,~ > 5R. 

The effect of multi-droplet interactions on the total behavior of the spray can be different than 
what is expected based on their effect on each parameter alone. The velocity of an interacting 
droplet is higher, for most of its lifetime, than for an isolated droplet because of the lower than 
unity correction factor for the drag coefficient. The effects of interactions on the heat transfer rate 
depend on the droplet size. For a large interacting droplet, the heat transfer rate is lower than for 
an isolated droplet. However, for a small droplet it is higher, although interactions cause a 
reduction of Nu at fixed Re. The higher relative velocity of the small droplets compensates by 
means of the Re and actually causes an increase in Nu. 

More research on interactions between 2 droplets is needed in order to increase the accuracy of 
this model. The correlations for interaction effects due to 2 droplets which move side-by-side in 
parallel should be improved. Correlations for the effects of interactions on the drag coefficient, Nu 
and Sherwood number should be derived based on data from studies of moving droplets which 
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Figure 11. Drag coefficient correction factor for a 100 #m droplet. Re and heat transfer values are taken 
from the results for the evaporation and motion of a dense spray in a one-dimensional flow field. 

include heat and mass transfer. The range of the correlation functions for 2 droplets in tandem 
should be expanded to the lower Re and higher heat and mass transfer numbers, which are 
encountered during the later stages of the droplet lifetime. 
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